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Abstract

In this research we examine the effects of El Niño Southern Oscillation (ENSO) on market

dynamics of major vegetable oil prices. We adopt a smooth transition vector error correction

modelling framework to analyze impacts of ENSO events on the vegetable oil prices, and, more

interestingly, to investigate the asymmetric nature of the ENSO dynamics and price responses

to ENSO shocks. Results confirm self-exciting type nonlinearities in the ENSO dynamics, and

presence of the so called transactions cost band in the system of vegetable oil prices. These

nonlinearities yield the history–specific asymmetries in the vegetable oil price dynamics, wherein

effects of ENSO shocks on the ENSO dynamics and the vegetable oil prices vary considerably

between different ENSO regimes. In general, positive deviations, El Niño events, result in the

vegetable oil price increase, while negative deviations, La Niña events, result in decrease of the

prices. We illustrate these effects using generalized impulse–response functions and the derived

asymmetry measures.
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1 Introduction

Weather and agriculture are intrinsically linked. Of course, this statement is hardly controversial:

crop yields in particular have long been observed to be closely tied to growing conditions. The

corollary is also true: market prices for many agricultural products will necessarily be sensitive to

weather shocks. There is substantial evidence of linkages between weather anomalies, agricultural

production, and commodity prices throughout the recorded history. For example, Temin (2002)

observed that prices for barley and mustard in ancient Babylon tended to move together in a

manner consistent with changing growing conditions. As well, Lamb (1995) provides evidence of

extreme price spikes for cereal grains in Europe during the worst years of the Little Ice Age. And

more recently various authors have examined the role of weather events and climate change on

crop yields, land prices, and profitability (see Ker and McGowan, 2000; Schlenker and Roberts,

2006, 2009, for examples of comprehensive empirical work on the (nonlinear) effects of weather and

climate anomalies on crop yields).

Aside from the obvious connections between rainfall and temperature on crop yields, and hence

prices, there is budding interest in the effects of large–scale medium–frequency climatic anomalies

on various economic variables including those linked to agricultural commodity production and

pricing. In part this interest stems from a growing recognition that even local weather conditions

may be linked to the medium–frequency climatic events. In recent years attention has focused on

a particular climatic phenomenon in the Pacific Ocean. During normal conditions equatorial trade

winds blow from east to west across the tropical Pacific. However, during the so called El Niño

events the trade winds weaken leading to a depression of the thermocline in the eastern Pacific and

a corresponding elevation in the west. The result is warmer–than–normal sea surface temperatures

(SSTs) in the eastern and central Pacific. These warmer SSTs in turn interact with the atmosphere,

the result being that trade winds are weakened even further. Typical consequences of El Niño events

are increased rainfall across the southern U.S. and in Peru, and drought in the western Pacific region,

especially in Indonesia and Australia. The counterpart to El Niño is La Niña, which is associated

with intensified trade winds and colder–than–normal SSTs in the eastern equatorial Pacific. In

general La Niña episodes result in weather anomalies opposite to those for El Niños. El Niño and
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La Niña events usually alternate and tend to reoccur approximately every three–to–seven years;

the result being the so called El Niño – La Niña cycle or the El Niño Southern Oscillation (ENSO).

These effects were first identified in the early 1920s by Sir Gilbert Thomas Walker (Walker, 1923),

who eventually coined the phrase “Southern Oscillation.”

While ENSO events take place in the tropical Pacific, they have consequences for global weather

conditions, and hence for agricultural commodity production and pricing. To this end several stud-

ies have found statistically significant correlations between ENSO events and economic behavior.

In a series of papers Paul Handler (e.g., Handler and Handler, 1983; Handler, 1984, 1990) provides

evidence that deviations in Midwest corn yields from long–term trends are often linked to SST

anomalies in the equatorial Pacific Ocean. Keppenne (1995) examined the relationship between

monthly soybean futures price movements and ENSO events by using spectral analysis: a 48–month

cycle in soybean futures prices related to the frequency of ENSO events was identified. Results also

indicated that soybean futures were more closely linked with La Niñas, presumably due to drought

conditions in the Midwest. In a related study Letson and McCullough (2001) examined the rela-

tionship between monthly soybean cash prices and ENSO events by performing Granger causality

tests; no meaningful connection between the two series was found. Finally, Debelle and Stevens

(1995), Brunner (2002), and Berry and Okulicz-Kozaryn (2008) have examined the possibility that

central Pacific Ocean SST anomalies affect macroeconomic performance including measures of in-

flation and output. For example, Brunner (2002) has assessed linkages between ENSO events and

various commodity prices along with a measure of inflation and GDP growth for G7 countries;

he found that ENSO events apparently have considerable explanatory power for commodity price

movements in many instances.

While several of the foregoing studies provide enticing evidence about possible relationships

between ENSO events and commodity price movements, more work is required. To begin, there

is mounting evidence that the ENSO cycle is not adequately described by linear dynamics, and

therefore linear time series methods may not be appropriate. For example, Hall et al. (2001) find

evidence that the autocorrelations in ENSO anomalies are different in El Niño versus La Niña

regimes. An (2009) provides a current review of research on nonlinearities in the ENSO cycle in the
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climatology literature, and makes special note of observed El Niño – La Niña asymmetries. As well,

there is mounting evidence that time series observations for many commodity prices may be more

adequately characterized by nonlinear dynamic relationships. For example, Shahwan and Odening

(2007) and Ahti (2009) show that nonlinear models based on artificial neural networks and smooth

transition autoregressions can yield improved commodity price forecasts relative to linear ones.

Additionally, Balagtas and Holt (2009) find evidence that a number of commodity prices behave

in a manner consistent with regime-dependent nonlinearity. There are several reasons for this.

First, it is due to the very nature of the production–distribution cycle: while agricultural crops

are usually harvested on an annual basis, given the demand shock they can be disposed promptly,

thus suggesting possibilities for asymmetric price dynamics (Holt and Craig, 2006; Ubilava, 2012).

Second, in the system of closely related (substitute) products, an additional source of nonlinear

behavior arises due to pretense of the so called “transactions cost band”: when prices are in

disequilibrium, a price shock to one or several commodities will typically result in prompt and

adequate adjustments by economic agents, resulting in a closer co–movement of prices; while when

prices are such that they are within the transactions cost band, economic agents may be reluctant to

react to small variations in one or more of the prices, thereby potentially mitigating co–movement

due to the substitution effects on the related commodities (Balke and Fomby, 1997).

What the foregoing discussion makes clear is that while there may be evidence of nonlinear

dynamics in ENSO events and, as well, in commodity price movements, to date the two have

not been considered together. That is our focus here. Specifically, in this paper we examine the

effects of ENSO events on market dynamics of world vegetable oil prices. There is evidence that

ENSO events have significant impacts on the production and prices for vegetable oils, most notably

for palm oil, which is produced primarily in Southeast Asia (see, e.g., Brunner, 2002). We also

conjecture that responses to ENSO shocks are asymmetric – a strong El Niño event may result in

price dynamics for vegetable oils that are very different than those associated with a strong La Niña

event. This later observation suggests that standard linear models including vector autoregression

(VAR) or vector error correction models (VECM’s) – models of the sort employed, for example, by

In and Inder (1997) and Owen et al. (1997) – may not be appropriate for examining relationships
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between ENSO events and vegetable oil prices. As noted recently by Ismail (2011), models for

related vegetable oil prices should allow for the possibility of asymmetric or nonlinear adjustments

irrespective of the role of ENSO events.

A central contribution of this paper is therefore to combine all of the aforementioned features in

a comprehensive modelling framework, and by so doing to report on the most thorough analysis to

date of the impacts of an important climatic anomaly – ENSO – on interrelated commodity prices.

Specifically, we use the smooth transition autoregression (STAR) modelling framework of Teräsvirta

(1994) to examine the potential for nonlinear dynamics in the ENSO cycle as well as within a system

of vegetable oil prices. To do so a multivariate version of the STAR model – the smooth transition

vector error correction model (STVECM) similar to that of Rothman et al. (2001) – is used to model

a system of interrelated vegetable oil prices. Smooth transition framework is a generalization of a

more restricted threshold autoregressive (TAR) models of Tsay (1989); Tong (1990). Additionally,

it embeds elements of other complex time series models, such as, Markov switching (e.g. Hamilton,

1989), and artificial neural network (e.g. Kuan and White, 1994) models. An attractive feature

of the STAR-type models is that they allow for a possibility of a continuum of switching points

between the regimes. This could be crucial when considering behavior of potentially heterogeneous

agents, for example. Additionally, because the growing and harvesting seasons of the considered

crops differ depending on the country of origin, the aforementioned nonlinearities associated with

supply and distribution dynamics, could be mitigated, and thus, a smooth transition between the

regimes could be a more appropriate nonlinear modelling technique.

In what follows, we will first present a brief overview of the vegetable oils industry. We will

then outline the modelling framework of this research, followed by the empirical analysis, where we

describe data used in the research and present main findings of this study. We will illustrate the

effects of various ENSO shocks by implementing generalized impulse–response functions.

2 Vegetable Oils: A Brief Overview

The fats and oils industry is important in international trade, consumption, and pricing, and there-

fore has long been of interest to economists. In the literature particular attention has been paid

4



to substitutability among different oils (see, e.g. Labys, 1977; Owen et al., 1997; In and Inder,

1997; Ismail, 2011). These and related studies have established that even though vegetable oils are

similar in terms of chemical composition and end–use, they are by no means perfect substitutes.

Nonetheless, several sub–groups of fats and oils share many of the same properties and characteris-

tics and, thus, are considered to be truly close substitutes. Specifically, the most prevalent of these,

both from production and consumption standpoints, is a group consisting of four major vegetable

oils: palm, soybean, rapeseed, and sunflowerseed (see, e.g., Schmidt and Weidema, 2008). These

oils constitute approximately 85 percent of world vegetable oil production and about 90 percent

of world vegetable oil trade (see figure 1). They also share many common end uses including food

preparation, soap production, and manufacturing of paints and medicines. Additionally, each are

currently used in biodiesel production (e.g. Demirbas, 2008), thereby further strengthening price

linkages amongst the oils in this group. Indeed, the reasonably high degree of substitutability be-

tween palm, soybean, rapeseed and sunflowerseed oils suggests their prices are likely to co–move

(In and Inder, 1997).

Due to increased global demand, there has been considerable growth in the production of

all major oils over the past several decades. Even so, palm oil production has increased most

dramatically, and currently, it is the most produced and exported oil in the world (PSD Online,

2011). Of particular interest is that over 85 percent of palm oil is produced in two countries:

Indonesia and Malaysia. Moreover, in these countries production growth has resulted largely from

the expansion of area planted to palm trees rather than from yield increases (e.g. Carter et al.,

2007).

Unlike palm oil, production of the remaining oils is not as tightly concentrated geographically.

For example, soybean oil, the second largest vegetable oil in terms of production and trade, is

produced in different regions of North and South America, Europe, and Asia; however, the top

three soybean oil exporting countries are the United States, Brazil, and Argentina. Likewise,

rapeseed oil is produced in different parts of the world, with Canada being the largest exporter.

And finally, sunflowerseed oil is produced largely by European countries, with Ukraine being the

largest exporter of this oil (PSD Online, 2011).
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While it is apparent that the vegetable oil production takes place in different parts of the world,

it is nontrivial that production of the world’s most exported (60 percent of total vegetable oil

exports) oil, that is, palm oil, is concentrated in Indonesia and Malaysia. The implication is that

extreme weather conditions in a given year will have a negative impact on palm oil production in

these countries, and therefore will have implications for palm oil price. As well, given that palm,

soybean, rapeseed, and sunflowerseed oils are apparently close substitutes in consumption, it seems

likely that any such shock to palm oil production and hence price will likely have spillover effects

on the prices for these other oils as well (again, see In and Inder, 1997).

What, then, might underly a palm oil production shock? Aside from changes in area (once

brought into production palm trees typically produce oil for upwards of 25 years), weather condi-

tions can have important implications for palm oil production (see, e.g., Casson, 1999). In particular

extreme drought reduces yields several months or more into future. Incidentally, El Niño impacts

in particular can be quite severe throughout southeast Asia, including Malaysia and Indonesia:

strong El Niño events in this region are typically associated with correspondingly strong drought

conditions (see, e.g., Enfield, 2003). The relationship between El Niño and palm oil production

in particular has also been noted in the popular press and in a series of technical reports. For

example, during the most recent El Niño event, that is, from late 2009 through early 2010, a spate

of articles appeared linking El Niño events to price spikes in palm oil (see, for example Berthelsen,

2009; Bromokusumo and Meylinah, 2009).

What has received virtually no attention are the potential spillover or secondary effects that

these events likely have on prices for closely related fats and oils. Earlier work by Brunner (2002)

provides some tantalizing evidence in this regard – he reports that El Niño events have a significant

impact on palm, soybean, groundnut, and coconut oils. But his results were not obtained by

allowing for dynamic feedbacks amongst the various oil prices, that is, substitutability amongst

prices was not considered. Moreover, and as previously noted, he assumed that the dynamics

governing the evolution of ENSO were linear. We now turn to a discussion of a modelling framework

that incorporates these various features.
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3 The Modelling Framework

In this section we outline the econometric approach used to investigate nonlinear dynamic relation-

ships between ENSO and vegetable oil prices. We begin by reviewing standard linear modelling

techniques for a single equation, followed by a discussion of STAR–type models. We then describe

a general econometric framework for specifying smooth transition vector error correction models.

3.1 Smooth Transition Autoregressive Models

Linear autoregressive models are the basic building block of the STAR modelling framework. An

autoregressive model of order p, an AR(p), in first difference form is written as:

∆yt = φ′xt + εt (1)

where ∆ is a first–difference operator; yt is a dependent variable of interest; xt = (1,∆yt−1, . . . ,∆yt−p+1, yt−1, z1,t, . . . , zm,t)
′

is a vector of right–hand–side variables; zj,t, j = 1, . . . ,m are exogenous variables including seasonal

indicator variables; φ = (α, β1, . . . , βp−1, β0, δ1, . . . , δm)′ is a vector of parameters to be estimated;

and finally, εt ∼ iid(0, σ2) is an additive error process. Note that if yt follows a unit root process

β0 = 0; otherwise we expect that β0 < 0.

The linear model in (1) is easily generalized to allow for nonlinearities in manner consistent

with Teräsvirta’s (1994) STAR framework. Specifically, consider

∆yt = φ′1xt [1−G (st; γ, c)] + φ′2xtG (st; γ, c) + εt, (2)

or, alternatively,

∆yt = ϕ′1xt +ϕ′2xtG (st; γ, c) + εt, (3)

where in (3) ϕ1 = φ1 and ϕ1 = φ2 − φ1. In either case G (st; γ, c) is a transition function that is

strictly bounded between zero and one. The transition function in turn varies with st, the transition

variable, which is often specified to be some function of lagged values of yt. Alternatively, st might be

specified to be a function of time, resulting in the class of time–varying autoregressions, or TVARs,
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pioneered by Lin and Teräsvirta (1994). The other determinants of G(.) are the parameters γ and

c, where γ, the speed–of–adjustment parameter, determines how rapidly shifts from one regime to

another occur and where c, a set of centrality parameters, determines the value(s) of st around

which regime changes are centered.

There are several choices for the specification of the transition function. The most popular is

the logistic function, which can be written in general form as:

G (st; γ, c) =

1 + exp

−
(
γ

σkst

) k∏
j=1

(st − cj)


−1

, γ > 0, c1 ≤ . . . ≤ ck, (4)

and where c = (c1, . . . , ck) is a vector of centrality parameters. In practice most analysts choose

either k = 1 or k = 2 (Lin and Teräsvirta, 1994). When k = 1 and when (4) is combined with (2)

the resulting model is a member of the logistic STAR, or LSTAR family and is useful in situations

where asymmetry in dynamic responses to st exists. Likewise, when k = 2 the resulting model is a

member of the quadratic STAR, or QSTAR family (Jansen and Teräsvirta, 1996), and is useful for

situations where nonlinearity is linked to the absolute value of st.

The transition function may also be specified by using an exponential representation, expressed

as:

G (st; γ, c) = 1− exp

{
−
(
γ

σ2
st

)
(st − c)2

}
, γ > 0, (5)

where parameters and variables are as defined previously. The exponential and quadratic functions

have similar properties in that both are useful for modelling changing dynamics associated with the

magnitude of the absolute value of the transition variable. Finally, in (4) and (5) the parameter

γ is normalized by σkst , where σst is the standard deviation of the transition variable, st. Doing

so effectively renders γ unit free. Figure 2 illustrates hypothetical representations for the LSTAR,

QSTAR and ESTAR transition functions for different values of c (c = 0 for LSTAR and ESTAR,

and c = (−1, 1) for QSTAR) and γ, the speed of adjustment parameter (γ = (0.5, 2, 10)).
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3.2 Smooth Transition Vector Error–Correction Models

The smooth transition autoregressive framework can be extended to a multivariate framework.

One specific case of interest is the smooth transition vector error-correction model (STVECM)

considered first by Rothman et al. (2001), and specified as follows:

∆xt = α1êt−1 +

p−1∑
j=1

Γ1,j∆xt−j + Ψ1zt (6)

+

α2êt−1 +

p−1∑
j=1

Γ2,j∆xt−j + Ψ2zt

 ιG(st, γ, c) + υt

where xt = (y1,t, . . . , yn,t)
′ is a n×1 vector of dependent variables; zt is a m×1 vector of exogenous

variables and/or seasonal dummies. Likewise, êt−1 = β′
(
x′t−1, 1

)
is a vector of estimated error–

correction terms, such that Πk = αkβ
′ is a matrix of parameters defining the long–term dynamics

between the variables in the system, where β is a matrix of cointegrating vectors, such that β′xt

is a stationary process (even though xt itself is not); and αk, k = 1, 2, is a matrix of speed–of–

adjustment parameters. As well, Γk,j and Ψk, k = 1, 2 and j = 1, . . . , p− 1, are matrices (vectors)

of parameters to be estimated. ιG(st, γ, c) is a vector of transition functions, where ι is an n–

dimensional unit vector restricting the transition function to be common across the equations – a

restriction that has been imposed in most prior research investigating STVECM’s (see, for example

Rothman et al., 2001; Milas and Legrenzi, 2006; Milas and Rothman, 2008; Goodwin et al., 2011).

Finally, υt ∼ N (0,Συ), where Συ is a n× n positive definite covariance matrix.

4 Data

We employ monthly data for the ENSO anomaly and for vegetable oil prices covering the period

between January, 1972 through December, 2010. The ENSO variable is constructed as sea surface

temperature (SST) anomalies for the Niño 3.4 region of the central Pacific, and is derived from

an index tabulated by NOAA’s Climate Prediction Center. Specifically, this index measures the

difference in SSTs in the area of the Pacific Ocean between 5◦N-5◦S and 170◦W-120◦W, and is thus

a strong indicator of ENSO activity. As well, the monthly measure is an average of daily values
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interpolated from weekly measures, which in turn are obtained from both satellites and buoys. The

anomaly is the deviation of the Niño 3.4 monthly measure from the historic average for the same

month for the 1971-2000 period.

Vegetable oil price data are for palm, soybean, rapeseed, and sunflowerseed oils, and were

obtained from ISTA Mielke GmbH, better known as the Oil World. All vegetable oil prices are in

U.S. dollars per tonne, and are either Free on Board (FOB) or Cost, Insurance, and Freight (CIF).

All prices are deflated by using the PPI for commodities, obtained from the U.S. Bureau of Labor

Statistics. Further, real prices were transformed by taking natural logarithms, so that changes are

expressed in percentage terms. Hereafter any reference to a vegetable oil price implies the real price

in natural logarithmic form, unless stated otherwise. Figure 3 shows a plot of vegetable oil prices

over the sample period. It is clear from this figure that prices have a strong tendency to move

together (co–movement).

5 Estimation

For estimation purposes we treat ENSO as a strictly exogenous variable. That is, vegetable oil

prices are contemporaneously correlated with ENSO, and are affected by lagged levels of ENSO,

but not the other way around. This assumption is hardly counterintuitive in that climatic events

are unlikely to be affected by commodity prices or other economic variables, at least in the short

or intermediate run. This assumption is, moreover, supported by findings in earlier studies (e.g.

Brunner, 2002). Therefore, we first estimate the ENSO equation independently as a univariate

process. We then estimate the system of vegetable oil price equations, where ENSO enters as an

exogenous forcing variable.

5.1 The ENSO Equation

We begin with a linear AR model for the ENSO series. Based on Akaike Information Criterion

(AIC), a lag length of p = 5 was chosen. Further, unit root tests (i.e., augmented Dickey-Fuller

tests) indicated that the null hypothesis of a unit root could be rejected for this series at α = 0.01

significance level. We therefore proceed by modelling the ENSO variable as in (1), that is, with a
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lagged level values for the ENSO variable included as a right–hand–side variable (such a specification

is preferred to a more straightforward autoregression in levels, because it allows for the possibility

of a unit root in one of several regimes in a regime-dependent autoregressive setup).

To identify regime-dependent nonlinearities, we adopt a testing framework of Luukkonen et al.

(1988), where an auxiliary regression approach is proposed to circumvent the nuisance parameters

identification problem, also known as the Davies’ problem (Davies, 1977, 1987). Two sets of tran-

sition variables were examined initially: lagged levels of ENSO, ENSOt−d, where d = 1, . . . , 12,

and, moving averages of ENSO, 1
d̄

∑d̄
i=1ENSOt−i, where d̄ = 1, . . . , 12. Test results for the moving

average transition variable are presented in table 1. A more thorough outline of the testing pro-

cedure, as well, a complete set of nonlinearity test results are reported in the Technical Appendix

(Ubilava and Holt, 2012). STAR models were then estimated by using the consecutive candidate

transition variables, the one with the lowest p–value in the nonlinearity test being considered first.

The final selection is made such that the estimated STAR model has an improved fit relative to

the linear model, based on AIC; the two regimes are seemingly identified; and evidence of remain-

ing nonlinearities is minimized. See the Technical Appendix (Ubilava and Holt, 2012) for a set

of remaining nonlinearity test results. Based on these criteria, as well as the results of additional

diagnostic tests (i.e., tests for no remaining parameter nonconstancy and for no remaining resid-

ual autocorrelation), we selected 1
3

∑3
i=1ENSOt−i as the most suitable transition variable. We

therefore define an empirical version of the STAR model for ENSO as follows:

∆ENSOt =

α1 + β1ENSOt−1 +

4∑
j=1

φj,1∆ENSOt−j + δ′1Dt

 (7)

+

α2 + β2ENSOt−1 +
4∑
j=1

φj,2∆ENSOt−j + δ′2Dt

G (ŝt−3; γ, c) + εt

where Dt is a vector of monthly dummy variables; other variables and parameters are as defined

in (1) and (3).
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5.2 The System for Vegetable Oil Prices

Let xt = (PPLM
t , P SOY

t , PRAP
t , P SUN

t )′ be a vector of observations at time t for vegetable oil prices.

Based on standard ADF tests, reported in the Technical Appendix (Ubilava and Holt, 2012),

all vegetable oil prices apparently contain a unit root. However, given the close substitutability

between the vegetable oils, and apparent co–movement of prices, one or more linear combinations of

these prices are likely to be stationary, that is, cointegrated. In this event the system of equations

can of course be modelled in vector error correction form. Indeed, Johansen test results support

the hypothesis of cointegration with two unique cointegrating vectors being identified. Details are

available in the Technical Appendix (Ubilava and Holt, 2012). Based on the AIC, the lag length for

the endogenous variables in the system was set to four. Additionally, we incorporate the current

and up to and including two lags of the ENSO variable in each equation of the system, wherein the

ENSO lags also selected based on AIC. Finally, we include monthly binary variables to account for

possible seasonal effects.

The next step is to test for nonlinearity in the system and, if identified, to specify a suitable

transition function. We adopt a testing framework proposed by Camacho (2004) to assess potential

nonlinearities in the system. See the Technical Appendix (Ubilava and Holt, 2012) for the details.

The candidate transition variables are lags of a simple average of the two error-correction terms,

¯̂et−d, where d = 1, . . . , 12. Thus, we intend to examine nonlinearities in vegetable oil price dynamics

in relation to the long-run equilibrium between the prices. The intuition is that adjustments to

long-run equilibrium may occur at differing rates depending on a direction or a magnitude of the

deviation from equilibrium. The nonlinearity test results are presented in table 2. Preliminary

results revealed there is little evidence of nonlinearities in seasonal effects, although is substantial

evidence of nonlinearities in the system’s autoregressive components. Further, the evidence re-

ported in table 2 points firmly in the direction of model a transactions cost band, that is, either an

exponential or a quadratic STVECM. We therefore, proceed by fitting exponential and quadratic

STVECMs using the candidate transition variables identified in table 2, while restricting the pa-

rameters associated with the seasonal indicator variables to enter the system in linear form. The

selection criteria are similar to those used in the case of ENSO equation. The result is that we
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selected ¯̂et−7 as the most suitable transition variable when combined with an exponential transi-

tion function. Based on the system AIC the estimated STVECM improves overall model fit. The

empirical version of the STVECM of the vegetable oil prices is therefore specified as:

∆xt =

α1êt−1 +

3∑
j=1

Γj,1∆xt−j + Ψ1ENSO + ΨDDt

 (8)

+

α2êt−1 +

3∑
j=1

Γj,2∆xt−j + Ψ2ENSO

 ιG(¯̂et−7, γ, c) + υt,

where ENSO = (ENSOt,ENSOt−1,ENSOt−2)′ is a vector of current and lagged values of the

ENSO variable; Dt is a vector of monthly dummy variables; other variables and parameters are as

defined in (6).

5.3 The Estimated Transition Functions

The estimated transition functions for the ENSO forcing variable and for the system of vegetable

oil prices are, respectively:

Ĝ (st; γ̂, ĉ) =

{
1 + exp

[
−2.133

(1.036)
/σe

(
1

3

3∑
i=1

ENSOt−i + 0.018
(0.244)

)]}−1

(9)

and

Ĝ (st; γ̂, ĉ1, ĉ2) = 1− exp

[
−1.325

(0.435)
/σ2

s

(
¯̂et−7 + 0.086

(0.020)

)2
]

(10)

where σe = 0.895 and σs = 0.293 and where values in parentheses are asymptotic standard errors.

The estimated γ values in (9) and (10) imply that regime transitions in both instances should be

relatively smooth and, indeed, as reported in figures 4 and 5 this is apparently the case. Specifically,

the transition function for the ENSO equation is centered approximately around zero, with the

two extreme regimes defining strong La Niña and El Niño phases, respectively. Regarding the

STVECM for vegetable oil prices, the estimated exponential transition function implies that the

transactions cost band is not defined solely by two discrete threshold points, but rather by a

continuum of points (locations) connecting the two regimes. The model’s dynamics associated
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with small deviations from long run equilibrium are defined by the estimated parameters in the

first regime, while dynamics associated with the large deviations are defined by incorporating the

estimated parameters from both regimes. The observed smooth transition between the regimes

reveals interesting features of market participants’ behavior in the sense that they are apparently

heterogeneous, and perhaps face differing costs for transport, insurance, and so forth.

6 ENSO Shocks: Simulation Results

To illustrate the nonlinear effects of ENSO shocks on vegetable oil price dynamics, we adopt

the generalized impulse–response function (GIRFs) approach of Koop et al. (1996). GIRFs are

especially revelatory when analyzing the dynamics of nonlinear models, which, unlike linear models,

are not invariant to initial conditions – the histories preceding the shocks, the sign and size of the

shock, as well idiosyncratic shocks that may occur throughout the forecast horizon. To explore the

extent to which there are asymmetries in response to ENSO shocks, and to compare ENSO and

vegetable oil price GIRFs for different histories and shocks, we first generate GIRFs by averaging

across a subset of initial conditions. Additionally, we select histories corresponding to extreme

positive and extreme negative SST anomalies as well as ones that correspond to an effectively

neutral regime. These histories are indicated in figure 3 with vertical lines/stripes. The selected

La Niña regime is specified by four consecutive observations (months) beginning with October of

1988, and represents the strongest La Niña episode of the past several decades. The El Niño regime,

which we specify by four consecutive observations beginning with October of 1997, represents one

of the strongest El Niño episodes in recent history. Finally, from a relatively large number of

the candidate histories representing a neutral regime, we select four observations in order to draw

comparisons with each of the extreme regimes.

A generalized impulse response function for a particular shock, ν, and a subset of histories, =,

is defined as:

GIRF (h, ν,=) = E (yt+h|ν, ωt−1 ∈ =)− E (yt+h|ωt−1 ∈ =) (11)

where ωt−1 is a particular history (month) within the subset of histories (regime). To numerically
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evaluate the expected realizations of the GIRFs we perform 500 bootstrap simulations for each

history and shock. The general procedure is outlined in the Technical Appendix (Ubilava and

Holt, 2012). Under the assumption of strict exogeneity for the ENSO variable, for each iteration

we first obtain ENSO forecasts both with and without the initial shock, and by using randomly

sampled innovations from the pool of residuals from the estimated ENSO STAR model. In the

next stage the forecasts for the ENSO variable are used to extrapolate vegetable oil prices from

the STVECM, where equation–specific innovations are sampled from the orthogonalized pool of

residuals associated with the estimated STVECM. The aforementioned procedure is performed

for each selected initial condition and for both positive and negative ENSO shocks. Moreover,

we consider shock sizes equal to 1.5 and 3 standard deviations of the estimated ENSO residuals.

To obtain a general picture of ENSO effects on vegetable oil prices we draw 50 histories without

replacement, thereby yielding a total of 25,000 GIRF vectors over a 48 month horizon. This process

is repeated for each shock sign and size. Additionally, for each history–specific regime, we obtain

2000 bootstrapped vectors of GIRFs, again for each shock sign and size. Mean responses are

obtained by averaging the realized GIRFs across the bootstrap iterations and selected histories.

Furthermore, the bootstrap resampling procedure allows us to generate an empirical distribution

around the expected GIRFs at each point in the forecast horizon.

Following Potter (1995) and van Dijk et al. (2002), we use asymmetry measures, ASYs, derived

from GIRFs to analyze the nonlinear effects of ENSO shocks on vegetable oil prices. In particular,

we are interested in sign–, size–, and history–specific asymmetries, which are respectively defined

as follows:

ASY± (h, ν, ωt−1) = GIRF
(
h, ν+, ωt−1

)
+GIRF

(
h, ν−, ωt−1

)
(12)

ASYν (h, ν, ωt−1) = kGIRF (h, ν, ωt−1)−GIRF (h, kν, ωt−1) (13)

ASY= (h, ν, ωt−1) = GIRF
(
h, ν, ωt−1 ∈ =+

)
−GIRF

(
h, ν, ωt−1 ∈ =−

)
(14)

where ν+ and ν− are, respectively, positive and negative shocks of the same magnitude; k is a

scaler; and, finally, =+ and =− are subsets of two different regimes from which the histories are
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selected. It follows, then, that shocks result in symmetric responses if ASYs are symmetrically

distributed around zero (van Dijk et al., 2002).

First we consider the expected GIRFs obtained by averaging over 50 histories. These are illus-

trated in figure 6, where we also identify 90–percent confidence intervals of the expected GIRFs.

Note, that GIRFs associated with negative shocks are multiplied by negative one in order to facil-

itate comparisons between the shocks of the opposing signs. A number of interesting features are

revealed from these graphs. First, ENSO shocks appear to have a statistically significant impact

on vegetable oil prices. In particular, a three standard deviation ENSO shock, which corresponds

to approximately a 0.7◦C SST anomaly, is responsible for about a 6–10 percent change in vegetable

oil prices. As well, El Niño shocks (i.e., a positive shock to the SST anomaly) result in increased

prices and La Niña shocks (i.e., a negative shock to the SST anomaly) – in decreased prices.

Also, of interest are the observed asymmetries in the ENSO as well as the vegetable oil price

impulse–response functions. In particular, while the ENSO STAR model implied a mean–reverting

process, positive, or El Niño shocks, are more amplified within the first several months as compared

with negative, or La Niña shocks. On the other hand, La Niña shocks tend to have a more prolonged

effect on ENSO dynamics as compared with El Niño shocks. These results seem to reasonably

characterize the ENSO cycle: El Niño phases, while acute, tend to last for shorter periods, often

followed with La Niña events, which, in turn, may last for longer periods of time. Additionally,

the asymmetries are especially apparent after large ENSO shocks, which also manifest themselves

in asymmetric dynamics in vegetable oil prices dynamics. The implication is that a relatively large

ENSO shock (either positive or negative) will likely cause a regime switch, resulting in different

dynamics as compared to a “no shock” scenario. In the case of smaller shocks, however, asymmetries

are less vivid, partly due to the smooth transition between regimes (both for ENSO and for vegetable

oil prices).

To further illuminate the effects of extreme ENSO events, we obtain history–specific GIRFs; see

figure 7. The histories represent extreme ENSO events and are compared to normal conditions, as

specified above. Focusing first on the response of the ENSO variable, history–specific asymmetries

are readily apparent. While all ENSO GIRFs stabilize by the end of the three–year horizon, the
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observed short– and intermediate–term paths vary widely. For example, in the El Niño phase,

the shock effects are more amplified in the beginning but also dissipate relatively more quickly as

compared with the impulse–responses associated with La Niña episodes. As well, shock signs cou-

pled with initial conditions are apparently impact vegetable oil prices differently, thereby inducing

ENSO–related asymmetries in price responses as well.

History–specific GIRFs are also used to obtain asymmetry measures, i.e. ASYs, as proposed

in equations (12) – (14). As in the case of GIRFs, here too we identify 90–percent confidence

intervals of the expected ASYs with dots of different shape. Sign– and size–specific asymmetries,

while on average different from zero, do not reveal statistical significance (figures are available upon

request). History–specific asymmetries, however, show statistically significant deviations from zero

in the short– and intermediate–run, wherein the asymmetry measures are derived from the extreme

regimes relative to the neutral regime (see figure 8). The implications are, for example, that a

negative (positive) shock during an El Niño (La Niña) event results in a more apparent movement

towards La Niña (El Niño) regime than a similar shock that occurs during normal conditions.

These effects manifest themselves in history–specific asymmetries of vegetable oil prices as well.

For example, in response to the ENSO asymmetries, vegetable oil prices tend to decrease more

after ENSO shocks during extreme regimes as compared with a neutral regime.

Additionally, we assess sign–, size–, and history–specific asymmetries by illustrating the empir-

ical distributions of the realized GIRFs at different horizons. In figure 9 we present Kernel density

function estimates of GIRFs at the 12–step–ahead horizon (a more complete set of the distribu-

tions are available upon request). These plots further confirm the previously stated findings: there

are considerable history–specific asymmetries in ENSO and, to some extent, vegetable oil price

dynamics, but there is little evidence for sign– and size–specific asymmetries in the system.

Overall, positive ENSO shocks are followed by increased vegetable oil prices, and the opposite

is true for negative ENSO shocks. Therefore, whether or not oilseed producers and consumers

are directly affected by an ENSO event, the strong substitutability between these oils results in

price co–movements. Negative ENSO shocks tend to have more persistent effects on vegetable

oil prices compared to positive ENSO shocks. Again, see figure 6. This outcome is most likely
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driven by the relatively prolonged nature of La Niña episodes as compared with the relatively more

abrupt nature of El Niño episodes. Interesting patterns are observed across different histories. For

example, when initial conditions are in La Niña regime, ENSO shocks (both positive and negative)

result in more persistent impulse–responses for vegetable oil prices, as compared to the neutral and

El Niño regimes.

7 Conclusions

In this paper we have explored potential nonlinearities in the El Niño – La Niña cycle, and the

associated impacts on vegetable oil price dynamics. Consistent with prior research, the results reveal

that ENSO dynamics are characterized by self-exciting type nonlinearity. As well, an estimated

system of interrelated vegetable oil price equations was found to poses nonlinearity related to the

size of the departure from long–run equilibrium relationships. These nonlinearities were further

examined by using generalized impulse–response functions and the derived asymmetry measures.

Palm oil, which is largely produced in Oceania and Southeast Asia, was found to be significantly

impacted by ENSO events. But as importantly, the other vegetable oils, such as soybean oil,

sunflowerseed oil and rapeseed oil that are produced in other regions of the world, and regions that

are arguably not prone to major climate anomalies resulting from ENSO events, were found to be

significantly impacted by ENSO events. This result is perhaps not surprising due to the very strong

substitutability in consumption between the oils examined here. Overall, our results reveal that a

negative three standard deviation from a normal ENSO regime – that is, a La Niña event – results

in reduced vegetable oil prices, while the corresponding positive shock – that is, an El Niño event

– results in increased vegetable oil prices, and these effects have persistent character.

Results of this research have interesting implications for researchers and policy makers for a

number of reasons. First, we model the system of vegetable oil prices using nonlinear time series

econometric methods, which improved the overall fit and, potentially, the predictive accuracy of the

model. Second, by using ENSO as an explanatory variable in the system, we condition the short–

and intermediate–term behavior of the vegetable oil prices on this exogenous variable – something

that has not been done in past, and which allows us to consider, and even predict different scenarios
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with respect to the state of nature and directions of the ENSO anomaly. Future research should

therefore focus on the role of ENSO anomalies for prices of other closely related commodities.
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Figures

Note: Values represent Million Metric Tons.

Figure 1: Major Vegetable Oil Production and Exports
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Figure 2: Representative LSTAR, QSTAR and ESTAR Transition Functions
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Note: SST Anomaly is expressed in ◦C; Prices represent natural logarithms of the vegetable oil prices expressed in 2010 U.S.

Dollars.

Figure 3: ENSO SST Anomaly and Major Vegetable Oil Prices: 1972-2010
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Figure 4: Estimated Transition Function for the ENSO Equation
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Figure 5: Estimated Transition Function for the System of Price Equations
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Note: dots denote empirical significance of GIRFs at α = 0.10 level; GIRFs associated with negative ENSO shocks are inverted

by multiplying realizations by negative one in order to facilitate comparisons between positive and negative shock effects.

Figure 6: GIRFs of El Nino and La Nina shocks (averaged across 50 histories)
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Note: dots denote empirical significance of GIRFs at α = 0.10 level.

Figure 7: GIRFs of El Nino shocks in different ENSO regimes
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Note: dots denote empirical significance of ASYs at α = 0.10 level; ASYs associated with negative shocks are inverted by

multiplying realizations by negative one in order to facilitate comparisons between positive and negative shock effects.

Figure 8: History–Specific asymmetries in GIRFs of ENSO shocks
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Note: in the case of sign– and history–specific shocks (SIGN and HIST, respectively) the densities are associated with 3

standard deviation ENSO shocks; in the case of size–specific shocks (SIZE) densities are associated with positive ENSO

shocks; in the case of HIST densities associated with negative shocks are inverted by multiplying realizations by negative one

in order to facilitate comparisons between positive and negative shock effects; finally, µ denotes mean, ν denotes skewness and

κ denotes kurtosis of the associated distributions.

Figure 9: Density Distributions of 12-step-ahead GIRFs of ENSO shocks
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Tables

Table 1: Nonlinearity Test Results for the ENSO Equation

Transition Variable H ′0 H04 H03 H02 Model

st−1 3.00E-06 4.90E-01 8.00E-01 7.40E-11 LSTAR

st−2 8.10E-07 5.30E-01 5.50E-01 3.90E-11 LSTAR

st−3 8.70E-08 4.70E-01 2.90E-01 1.20E-11 LSTAR

st−4 7.10E-08 6.20E-01 2.20E-01 7.00E-12 LSTAR

st−5 2.00E-08 4.50E-01 1.90E-01 4.80E-12 LSTAR

st−6 2.30E-08 4.20E-01 1.50E-01 1.10E-11 LSTAR

st−7 2.30E-08 3.30E-01 8.10E-02 6.40E-11 LSTAR

st−8 1.80E-08 1.60E-01 4.80E-02 5.70E-10 LSTAR

st−9 6.60E-09 3.50E-02 3.10E-02 4.50E-09 LSTAR

st−10 5.30E-09 1.20E-02 2.20E-02 3.00E-08 LSTAR

st−11 1.60E-08 9.40E-03 1.80E-02 2.30E-07 LSTAR

st−12 1.60E-07 1.10E-02 2.40E-02 2.30E-06 LSTAR

FRN 3.80E-01 6.80E-01 3.80E-01 1.90E-01

Fτ 4.90E-01 9.40E-01 6.30E-01 4.60E-02

FAC 1.20E-01

Note: the values in the table represent probability values of the hypotheses being tested: the column headed with H′0 corresponds

with the null hypothesis of linearity; the columns headed with H04 and H02 correspond with the embedded test against logistic

nonlinearity, while the column headed with H03 corresponds with the test against exponential/quadratic nonlinearity; the

appropriate models are presented in the column headed with Model. Further, st−d = 1
d̄

∑d̄
i=1 ENSOt−i, where d = 1, . . . , 12

and d̄ = 1, . . . , 12. Finally, FRN, Fτ , and FAC denote tests against remaining nonlinearity (with respect to the transition

variable of choice, i.e. st−3), parameter nonconstancy, and residual autocorrelation, respectively.
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Table 2: Nonlinearity Test Results for the System of Vegetable Price Equations

Transition Variable H ′′0 HE HL Model

st−1 5.70E-03 2.30E-01 1.20E-02 LSTVEC

st−2 3.00E-01 9.40E-01 4.80E-02

st−3 1.40E-01 8.40E-01 2.60E-02

st−4 1.00E-01 6.10E-01 5.80E-02

st−5 6.10E-10 4.70E-06 5.50E-04 ESTVEC

st−6 5.50E-07 8.30E-06 4.90E-02 ESTVEC

st−7 8.60E-07 2.00E-07 3.30E-01 ESTVEC

st−8 2.10E-06 1.40E-05 8.60E-02 ESTVEC

st−9 6.70E-03 7.70E-04 7.30E-01 ESTVEC

st−10 9.70E-02 4.30E-01 1.10E-01

st−11 2.10E-01 1.90E-01 5.80E-01

st−12 3.10E-01 1.50E-01 8.10E-01

FRN 1.4E-05 7.7E-03 2.7E-03

Fτ 9.1E-10 3.6E-04 1.1E-05

FAC 5.8E-01

Note: the values in the table represent probability values of the hypotheses being tested; the tests are performed on autoregressive

components of the system, while seasonal components are omitted from the testing framework. The column headed with H′′0

corresponds with the null hypothesis of linearity; the column headed with HE corresponds with the embedded test against

exponential/quadratic nonlinearity, while the column headed with HL corresponds with the test against logistic nonlinearity;

the appropriate models are presented in the column headed with Model. Further, st−d = ¯̂et−d, where d̄ = 1, . . . , 12, and where

¯̂et−d is a simple average of the two estimated error correction terms. Finally, FRN, Fτ , and FAC denote tests against remaining

nonlinearity (with respect to the transition variable of choice, i.e. st−3), parameter nonconstancy, and residual autocorrelation,

respectively.
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